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Abstract-The creep buckling behavior of a geometrically imperfect complete spherical shell subjected to a
uniform external pressure is examined using Sanders' equilibrium and kinematic equations appropriately
modified to include the influence of initial stress-free imperfections in the radius. The Norton-Bailey
constitutive equations are used to describe the secondary creep behavior and elastic effects are retained.
The initial imperfections have the same shape as the classical axisymmetric elastic buckling mode and the
initial elastic response is obtained analytically for external pressures smaller than the corresponding static
collapse pressure. Numerical finite-difference procedures are used to obtain the axisymmetrical creep
bucklina behavior and to determine when a bifurcation or loss of uniqueness into a non-axisymmetric
deformation state occurs.

The numerical results for the creep buckling behavior of complete spherical shells are similar for
hydrostatic and deadweight-type external pressures, at least for the particular parameters examined herein,
and demonstrate that initial imperfections exercise an important influence on the critical times. It turns out
from a practical viewpoint that axisymmetric creep bucklina governs the behavior of the spherical shells
examined in this article. It was observed from the present results that the creep buckling times of externally
pressurised complete spherical shells are longer than those for "equivalent" axially loaded cylindrical
shells.

NOTATION
a mean radius of spherical shell
c defined by eqn (I6b)

4. defined by eqn (9i)
h thickness of spherical shell

Ic... defined by eqn (9d)
m••, n.. defined by eqns (9g, 0

m circumferential harmonic (eqns 30)
n dearee of Legendre polynomial (eqn IS)
p transverse pressure (Fig. I)

pc 2Eh 2/{3a4(1- .,2»112, classical buckling pressure of an elastic perfect spherical shell
P, static bucklina pressure of an elastic imperfect spherical shell
q. defined by eqn (9h)

1 time
10 defined by eqn (Sa)

1Ia, w non-dimensional displacements (eqns 91, b)
z coordinate normal to mid-surface of shell (Fig. I)
E Young's modulus

E.. membrane strains
J2 defined by eqn (3b)
K creep coefficient (eqns I, 2)

K", defined by eqn (2b)K.. bending curvatures
M defined by eqn (3a)M.. bending moments per unit length (Fig. I)
N creep index (eqns 1-3)N.. membrane forces per unit length (Fig. I)
P defined by eqn (8b)

Q. transverse shear forces per unit length (rig. I)
T non-dimensional time (eqn 91)

TC non-dimensional creep buckling time
U., W in-plane and transverse displacements, respectively (Fig. I)

W initial transverse displacement (imperfection)
fJ circumferential coordinate (Fig. I)
f radial imperfection non-dimensionalised with respect to h (eqn IS)

Ea. defined by eqn (9<;)
., zlh'I.. total strain rate (eqn 4)

T/;~ elastic strain (eqn 5)

tPresent address: The University of Liverpool, Department of Mechanical Engineering, P.O. Box 147, Liverpool L69 3BX,
England.
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lj :;/1 creep strain rate (eqn 11
8 meridional coordinate (Fig. I)

An defined by eqn (22dl
Il- hlo
v Poisson's ratio

er.~ Tn~/E
Tn~ stress tensor for plane stress
IP" rotations of middle surface
~ rotation of surface normal

tP, =-w. do
tP, defined by eqn (\4al
<1>, defined by eqns (I) and (2l
Jl defined by eqn (\4bl

(l., <l( l/<l8
(k <l( l/<l~

()* a( l/a8
(' 1 <l( liar or a( liar

P. C. XI~Olil'IIA;'I~ and N()~MAN JONIS

INTRODUCTION

The creep buckling behavior of cylindrical shells subjected to various external loads has been
examined by a number of authors as described in the review articles by Hoff[l] and Gerdeen
and Sazawal [2]. Some more recent studies on the creep buckling of cylindrical shells are
reported in Refs. [3-5]. By way of contrast, it is evident from Ref. [2] that relatively few
investigations have been published on the creep buckling of spherical shells. The creep buckling
behavior of spherical shells subjected to external pressures and made from materials prone to
creep (e.g. plastics, concrete, titanium alloys) is of interest for the design of various ocean
engineering structures (e.g. submersibles, habitats, underwater storage tanks).

The available theoretical studies on the creep buckling of viscoelastic spherical caps[6,
7, etc.], shallow spherical shells [8] and deep spherical shells [9, 10, etc.] were developed for
shells with perfect geometries. However, it is well known [11 , 12] that the static elastic and
plastic buckling of spherical shells is sensitive to the influence of initial geometrical imper
fections. A perturbation procedure was developed in Ref.[t3] to examine the influence of an
arbitrary initial imperfection field on the creep buckling behavior of a complete spherical shell
subjected to a uniform external pressure. However, the theoretical results are only valid for
small departures from the fundamental state and the influence of material elasticity was
disregarded. Bushnell[14] has developed a numerical procedure which may be used for the
creep buckling of shells but no results appear to have been published for spherical shells.

In this article, the creep buckling of an imperfect complete spherical shell subjected to a
uniform external pressure is examined using Sanders' [15] equilibrium and kinematic equations
appropriately modified to include the influence of initial stress-free imperfections in the radius.
The Norton-Bailey constitutive equations are used to describe the secondary creep behavior
and elastic effects are retained. The initial imperfections have the same shape as the classical
axisymmetric elastic buckling mode[l1, 16, 17, etc.] and the initial elastic response is obtained
analytically for external pressures smaller than the corresponding static colIapse pressure.
Numerical finite-difference procedures are used to obtain the axisymmetrical creep buckling
behavior and to determine when a bifurcation or loss of uniqueness into a non-axisymmetric
deformation occurs.

The objective of this article is to reveal some aspects of the creep buckling behavior of
externally pressurised imperfect complete spherical shells rather than to develop a numerical
procedure which is suitable for a broader class of problems. The finite-difference energy
scheme of Bushnell [14], which may be used for many structural problems, could have been
employed for the present study. However, a different numerical procedure (finite-difference
formulation of equilibrium equations) is used herein which embodies a few advantageous
features for the present problem. For example, the initial elastic response is obtained analytic
ally in the present work. Furthermore, all the equations and results are dimensionless rather
than dimensional as in Ref. [14]. The time integration scheme utilises a variable time step,
which is more efficient particularly for creep problems, and Gauss-Legendre quadrature, which
is more accurate than Simpson's rule, is used to evaluate the integrals across the shell
thickness.
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BASIC EQUATIONS
The strain-displacement and curvature change relations for the complete spherical shell in

Fig. 1are obtained in Ref. [18] according to Sander's non-linear shell equations for small strains
and small rotations of the surface normal in comparison to rotations about the coordinate
Iines[15] and appropriately modified to include the effect of initial stress-free axisymmetric
imperfections (W). A consistent set of equilibrium equations were found using the principle of
virtual work and reduce to the corresponding equations in Ref. [9] for the perfect case. The
strain-displacement. curvature change. and equilibrium equations are given by eqns OHI3) in
Ref. [18] and by eqns (10) and (11) here in dimensionless form.

Odqvist demonstrated that the Norton-Bailey law for uniaxial creep ('lj' = KT N
) when

generalized with the aid of the Prandtl-Reuss incremental relations takes the form

(l)t

where 'lj~1l are the creep strain rates, Sail is the stress deviator given by Sail =Tall - Trr8all/3.

<1>, =K",Jlf , K", = 3",+IK/2.

M =(N - 1)/2, and h =(T1I
2+T222- TIIT22 +3T.l)/3

(2a, b)

(3a, b)

for plane stress. The total strain rates are written as the sum of the elastic and creep
components

• _ 'EL 'c
T/all - T/all + T/all'

I
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Fig. I. Element of a spherical shell. fJ and 8 are the circumferential and meridional coordinates,
respectively. Subscripts I and 2 are associated with 8 and fJ.

tGreck indices range from I to 2.

(4)
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where the linear elastic strains are

(5)

for an isotropic material. Equations 0), (4) and (5) give

1'.2 = E1}t2/0 + II) - E<I>cTt2/0 + II) (6a)

I'll = E(1)1I +v1)22)/0-1I2)- E<I>c{(2-II)TII-O-211)T221/30-112), (6b)

and a similar expression for 1'22'
Now the Love-Kirchoff assumption that initially plane cross sections remain plane throughout

deformation requires -riall =E,,11 +zItIl so that defining the membrane forces (Noll) and bending
moments (Mall) in the usual manner and using eqns (6) gives

together with expressions for the remainder of Noll and Mall which are presented in Ref. [18].

NON-DIMENSIONALISATION

The time to required to reach a uniaxial strain 1'1' is to = .,.,eIKTN according to eqn (l) for a
time-independent uniaxial stress T. If the uniaxial stress T is identified with the membrane stress
in a spherical shell due to a pressure p, then T =pa/2h. Thus, the time to required for the creep
strain T/c to reach the elastic strain given by T/EL = TIE is to = 1/(KETN-1), or

The dimensionless quantities

Ua=Ualh, W =Wlh, Eall =aT/alllh, kall =aKa/J'

p. =hla, na/J =Na/JIEh, ma/J =Ma/JIEh 2
, qa =QalEh,

ea/J =aEa/Jlh, Ua/J =Ta/JIE" =zlh, and T =tlto,

(8a, b)

(9a-l)

together with eqn (8b) allow eqns OHI3) in Ref. [18] and eqns (4), (5) and (7) here to be written

1/>1 = P.(UI - W,I), 1/>2 =P.(U2 - W,2 cosec 8), ci>. = - p.w,1t

I/> = P.(U2 cot 8+U2,I - Uh2 cosec 8)/2,
22-ell = W+Ultl + (1/>1 + I/> )/2p. + I/>.I/>.Ip.,

e22 = W+u. cot 8+U2,2 cosec 8+ (1/>22+1/>2)/2p.,

el2 = {U2,J +U"2 cosec 8 - U2 cot 8+(1/>, +ci>,)1/>2/p.}/2,

kll =I/>lth k22 =1/>212 cosec 8+1/>. cot 8,

kl2 =(1/>2,' +1/>"2 cosec 8 - 1/>2 cot 8)/2,

nil,. +nil cot 8+nt2,2 cosec 8 - n22 cot 8+q.- (I/>, +ci>t)nll

- 4J2n12 - {4J(nll +n22)},2 cosec 8/2 - P(4J1 +ci>.) = 0,

n22,2 +2nl2 cos 8+n12,' sin 8+q2 sin (} - {4J2n22 +(4J. +ci>.)n!2l sin (}

+{I/>(nll + n22)},t sin 812 - P4J2 sin (J = 0,

q"l+ ql cot (} +q2t2 cosec 8 - nil - n22 - {(I/>, +ci>.)nll +1/>2nd'i

- {(4J1 +ci>1)nll + 1/>2n12} cot (} -{(I/>I +ci>1)nI2 +1/>2nd'2 cosec 8 - P = 0,

(lOa-j)



where

and
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mlhl + mil cot 6 + ml2,2 cosec 6 - m22 cot 6 - qdf.L =0,

m22,2 + 2ml2 cos 6 + ml2,1 sin 6 - q2 sin 6/f.L = 0,

'C _. 'cL 'cL-{(I+)' . J: }/Ea/3 - Ea/3 - Ea/3, Ea/3 - II Ua/3 - JIO'yyVa/3 f.L,

Ea/3 = ea/3 + (1<../3,

f
l/2

nil =",(ell + IIf22)/(1- 112)- tIIc{(2- lI)ulI-(1-211)udd (/3(1- 112),
-1/2

tIIc = 3(N+Il/2(2/P)N-lj2(N-Il/2/2

,12 = (urI +U~2 - UIIU22 +3uh)/3,

(")= a( )/aT.

I3S

(11a-e)

(12a-<)

(13)

(14a)

(14b)

(14c)

Equations (10a-<l), (l0e-g) and (lOb-j) are the dimensionless rotations, membrane strains and
curvature changes, respectively, while eqns (11a-<) and (lId, e) are the respective three
dimensionless force equilibrium equations and two moment equilibrium equations[15, 18].

INITIAL ELASTIC RESPONSE
A uniformly distributed external pressure is applied "instantaneously" but quasi-statically to

the entire external surface area of a complete spherical shell. Thus, the initial condition for the
creep buckling problem is the initial elastic response which is sought in this section. Only
external pressures smaller than the corresponding elastic buckling pressure are of interest in
this article.

The initial stress-free axisymmetric radial imperfection is assumed to have the form

(15)

which is the shape of the elastic bifurcation modet[1I, 16, 17,etc], where w is the non
dimensional radial displacement due to the presence of the non-dimensional radial imperfection
of magnitude E (wand E are non-dimensionalised with respect to the shell thickness), and Pn

(cos 6) is a Legendre polynomial of degree n. The value of n is the integer which most closely
satisfies

Now,

n(n +1) = 2ca/h, c = '\1[3(1 - 112)]. (l6a, b)*

for the axisymmetrical behavior of a spherical shell and all the remaining variables are
independent of (3. A solution of the governing equations is sought to first order in E using a
perturbation scheme around the membrane state of deformation with

W= IV +Ew',and U =EU', (17a, b)

where IV is the radial displacement according to the membrane solution and EW' and EU' are
perturbations of order E from the dominant membrane state. The zero order problem is the

tThe perturbation procedure developed in Ref. [131 demonstrated that the critk:al harmonic: for the creep buckling of a
complete spherical shell was the same as the corresponding value for an elastic sheD reported in Ref. [II, 16) and [17] with
,,·O.S.

tit may be shown that the governing equations in this article also predict eqn (168) and Pr - 2Eh'/{3a'l- ",)pn.
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w =- (I - IJ )P/21l, (18)

while the first order problem may be cast into the following form[18]

(1 + v)w'* + 'ij2S* - (v + cot2 8)s* + 1l(1 + lJ)ww* + 1l2{'ij2S* - (IJ + coe 8)s*

- 'ij2 W'* + (IJ + coe 8)w'*}/12 -Il(1 + v)w(s* - w'*)

+21l(1 + v)w(s* - w* - w*) = 0,

and

(I9a)

where

s*=u', and 'ij2( )=( )**+cot8( )*.

If

W' =A.P.(cos 8), and u' = B.P. *(cos 8)

(20a, b)

(21a, b)

are substituted into eqns (19) then it may be shown that the two resulting equations for A. and
B. have the solution

where

A. =Ilw{n{n +1) +2v-1l2A./6}/Det.,

B. = IlW[I + IJ + 2(1 + IJ)/{n(n + l)} -1l2A./6]/Det.,

(22a)

(22b)

Det. = {(1 + v)(1- I£W) -1l2A./12}[1 + I£w - 1£2A./{12(1 + JI)}]

-{(1 + 1l2/12)A. +(1 + JI)I£w}[I£2A./{12(1 + v)}-2/{n(n + 1)}- I£W], (22c)

and

A. = 1- 1/- n(n +1).

Thus,

w = W+ EA.P.(cos 6), and u = EB.P~(cos 8)

are the required solutions.
It may be shown[l8] by taking the appropriate limits as 9 approaches 0 or 1T that

u =c/I =q =0, w =W:t EA.,

ell = w:t E{A. - n(n + 1)B./2}, e22 = ell,

kll ==+: EI£(B" - A.)n (n + 1)/2, k22 =kll ,

nil =I£W/(1- v):t EI£n(n + I)BJ2(1 + v), n22 =nil,

mil = ±EIl2(B" - A,,)n(n + l)/{24(I- vH, mn = mil,

(22d)

(23a, b)

(24a-d)

(25a-h)

where the upper signs of:t or =+: are used at 8 = 0 when n is even or odd and at 9 = 11' for n even,
while the lower sign is used at 9 = 11' when n is odd.
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AXISYMMETRIC CREEP BUCKLING
The governing equations for the creep buckling behavior of a complete spherical shell

subjected to a uniform external pressure are developed in Ref. [18} using eqns (l0}-(12) here for
the case when the deformations remain axisymmetric. It turns out that these equations may be
reduced to six first order differential equations in six rate variables rill, ti, mil> Il, wand 4> and
written in the form

where

Z*+At=P. (26)

(27)

and the elements of the 6 x 6 matrix A and the 6 x 1 vector P are given in Appendix 1. It is
evident from Appendix 1 that the elements of matrix Adepend on the vector t, while vector P
depends on the current state of stress (0'11,0'22), Obrecht(S] successfully employed a similar
formulation and choice of variables in a numerical analysis of the axial creep buckling of
circular cylindrical shells. It appears that the present method has not been used to investigate
the creep buckling behavior of imperfect complete spherical shells subjected to a uniform
external pressure. A similar procedure was used previously with success to examine the plastic
behavior of complete spherical shells[ll] and to study the elastic behavior of shells of
revolution in Refs.[19-21]. The advantage of this formulation is that no differentiation of the
stiffness quantities is required as noted in Refs. [S and 11].

The boundary conditions at the poles «(J =0, '1t') are

4=u=4>=0. (28)

BIFURCATION
The conditions under which a complete spherical shell which is deforming in the fundamen

tal axisymmetric mode considered in the last section bifurcates into an asymmetric shape at
some time T" after creep commences are explored in this section. The constitutive equations
for the incremental deformations from the fundamental axisymmetric state at the bifurcation
time T" are assumed to be elastic since the bifurcation occurs instantaneously[S, 22, etc.].

Let,

UI =O.+u;, U2= uz, w= W+Wi, ~I =~,+~i,

~2= ~z,~ =~', til =ell +t;l>tn =en+ eho

e12 =eb, kll =kll +kh, kn =kn +kn.k12 =kh,

nil =nil + nh, n22 =nn+ nh, nl2 = nh. q, = iii +ql,

q2= qz. mil = mil +m;.. mn =mn+ mh,mI2= mh,

(29a-t)

where the barred quantities now correspond to the axisymmetric state considered in the
previous section, which includes both elastic and creep response. while the primed terms are
the linear elastic perturbations from the fundamental axisymmetric state.

The strain-displacement, curvature change ana equilibrium equations for the perturbed
state are obtained by substituting eqns (29) into eqns (10) and (11) [18]. As remarked previously.
the constitutive relations for the incremental perturbations from the axisymmetric state are
governed by the linear elastic relationships. The fJ dependence may be eliminated from these
equations by using[9]

U!«(J, fJ) =uj(9) sin mfJ, and u~6. fJ) =u;«(J) cos m{3 (301, b)
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and

It is shown in Ref. [18] that the governing equations for the asymmetrical bifurcation of a
complete spherical sheIl may be reduced to the system of four second order differential
equations

EX-- +fiX- +aX = 0,

where the double primes are dropped for convenience.

( )* = il( )/il8,

and the elements of the 4 x 4 matrices E, F and aare given in Appendix 2.

NUMERICAL PROCEDURE

(3Ia)

(3tb)

(a) Axisymmetn'c creep buckling
The system of eqns (26) is solved using the central finite-difference method with a meridian

of the shell (O:s (J :s; 1l') divided into N - t equally spaced intervals with N stations. Thus. eqn
(26) becomes

(32)

where

and

(33a, b)

If the finite-difference approximations (33) are substituted into eqn (32) then

(34)

where

(35a, b)

and I is the identity matrix. The elements of the 6 x 6 matrix Ai-l12 and the 6 x 1 vector Pi-In
are given in Appendix 1.

Equations (34) may be recast in the form

(36a)

and

(36b)
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when the vector t i is split into the two subvectors Xi and f'i, where X; =['hI. q, mll]/, f'i =
[u, W'~]iT,

(37a-e)

Now, the boundary conditions at 8 =0 and 8 =7T are given by eqns (28). The boundary
conditions at 8 =0 may be written in the form of eqn (36b) with i =I provided

o 0)o 0 .
o 1

(38a-c)

(38d, e)

Similarly, the boundary conditions at 8 = 7T are given by eqn (300) with i =N +1 when

Thus, eqns (28) may be written

(39a-c)

(39d, e)

(4Oa, b)

The system of linear algebraic eqns (36) and (40) in the variables Xi and f'; are solved at
each time step using Potters' method [23, 24] and the initial conditions are given by the initial elastic
response. The integration through the thickness of the sheIl required for the evaluation of Pi-1/2

given by eqn (37e) and in Appendix I is done using the ten-point formula of Gauss-Legendre
quadrature[2S] which is more accurate than equal-interval formulae (e.g. Simpson's rule) for the
same number of integration points.

The time integration of t is performed by using Euler's integration scheme. It may be
shown that eqn (53) in Ref. [26] can be written

(4l)t

and provides an upper bound on the time step !:AT to ensure numerical stability of the time
integration scheme. If at each time step J2 is evaluated at every spatial point and the value of J2
in eqn (41) is identified with the maximum value of J2(J2(maX), then the required time step is

!:AT::= 4f(l + v){2V (3J2Amax)/PP-N/3N, (42)t

where f is a factor less than unity. A result similar to eqn (42) was derived in Ref. [27] by
requiring the incremental equivalent creep strain at each time step to be smaller than the
corresponding equivalent elastic strain. It turns out in this case that the factor 4f(l +v)/3Nt in
eqn (42) must be smaller than unity.

(b) Bifurcation
The system of eqns (3Ia) is solved using the central finite-difference method with a meridian

of the shell (0 s 8 S 7T) divided into N equally spaced intervals with N + I stations.

t N is defined by eqns (I) and (3a).
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Thus, eqn (31a) becomes

where
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(43)

(44a-c)

The elements of the 4 x 4 matrices Ej, F; and Oi are given in Appendix 2.
Now, it may be shown that" I = "2 =W = W' = 0 at 8 = 0, 'fT when mF I in order for the strains

and curvatures to remain finite at the poles (8 =0, 'fT). Furthermore, it is also required that
mil = Oat 6 = 0, 'fT when m:\= 0,2[18]. Thus, "I = U2 = W = mil =0 at 6 =0, 'fT with m:\= 0, 1, 2
which according to eqn (31b) gives X= 0 when 9 =0 and 9 ='fT. These boundary conditions
may be written using eqn (43) with i =0 for 6 = 0 and i =N for 6 ='fT as

(45a, b)

where Eo and EN are identity matrices and Co and AN are null matrices.
Bifurcation occurs when the determinant of the coefficients of the N + I algebraic eqns (43)

and (45) equals zero. This determinant may be expanded in the form of eqn (2) in Ref. [28] and
the required eigenvalues located using the modified residual

where

..« =~. IH2 - A2PII . IE) - A~21
abs IEII abs IE2- A2PIl abs IE3 - A3P21

JEN - 2 - AN - 2PN- 3L 'IB- - A- P- I
- - - N-I N-I N-2

abs IBN-2 - AN - 2PN - 31

(46)

(47a, b)

The modified residual ..« is computed at each integration time step for every circumferential
harmonic (m) up to the degree n of the Legendre polynomial in the initial elastic response.

A change in sign of At indicates bifurcation.

DISCUSSION

The numerical results presented in Figs. 2-8, except for those marked.in Fig. 3. were
obtained for a dead-weight-type external pressure loading for which the terms related to P in
eqns (lla) and (lIb) were dropped. Moreover, the initial radial imperfection at 9 = 0, which equals
l according to eqn (15), is always directed radially inwards (i.e. w< 0 at (J = 0).

Tong and Pian[29] developed a finite-element method and examined the influence of
symmetric imperfections on the static buckling behavior of an elastic spherical shell with
alh =82 and v =0.3 subjected to a dead-weight-type external pressure. The numerical results
of Tong and Pian are taken from Fig. 3 of Ref. [29] and compared in Fig. 2 here with the
present finite-difference calculations for the elastic case, where Pc =2Eh2/[a 2{3(l- v2

)}1/2] is the
classical buckling pressure of a perfect spherical shell. It is evident that the two sets of results
are virtually indistinguishable. It turns out that the behavior of the spherical shell in Fig. 2 is
governed by axisymmetric buckling because bifurcation to a non-axisymmetric state never
occurred at lower loads.

The axisymmetric static elastic buckling pressures in Fig. 2 were found using the method
described in Ref. [24] and elsewhere. If the solution vectors 82 in Appendix 3t were known at
every meridional station for a pressure p, then 2 +82 would be obtained in the usual manner

tThe governing equations for the linear elastic case have the same form as eqn (26) but with i* and i replaced by 82·
and 8Z, respectively. A few elements in the mjltrix A and all those in the vector is are changed as shown in Appendix 3.
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Fig. 2. Comparison of present theoretical predictions for static elastic buckling of externally pressurised
complete spherical shells with the finite-element results of Tong and Pian(29) (IL =1/82. I' =0.3. n =16).
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for the pressure p +6p. Convergence is assumed when

is tess than 10-3• If the convergence criterion is not satisfied after 20 iterations then the pressure
is reduced by 81'/5 and the process repeated. This procedure is repeated until a pressure is
found at which convergence is acbieved.

The dead~wejgbt-type external pressure to classical buckling pressure ratio (PJpc) vs the
dimensionless critical time at which creep buckling occurs (TC) is shown in Fig. 3 for a
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complete spherical shell with various magnitudes of initial imperfections. It is evident that
axisymmetric creep buckling essentially governs the response since bifurcation into a non
axisymmetric state only occurs for a few shells with short creep buckling times and at pressures
which are quite close to the axisymmetric creep buckling results. The meridional distribution
and temporal variation of the non-dimensional radial displacement (w), dimensionless meri
dional bending moment (mil), and dimensionless meridional membrane force (nil) are indicated
in Fig. 4, while the typical dimensionless radial displacement-time histories in Fig. 5 reveal the
growth of the inwards displacements at the pole for several of the data points in Fig. 3. The
numerical results in Fig. 6 serve to demonstrate the influence of the creep index N on the creep
buckling pressure-critical time characteristics.

The non-dimensionalised time step given by eqn (42) ensures numerical stability of the time
integration scheme for the axisymmetric creep buckling calculations. A value of / = 0.5 was
used for all the results presented herein. Furthermore, the factor 4/(1 + 1I)/3N equals 0.296,
0.178 and 0.127 for N = 3,5 and 7 respectively and v = 1/3. Thus, the two different numerical
stability criteria developed in Refs. [26,27] are satisfied. Now, eqn (42) may be written in the
form

AT = 2/0 +v)/{MMmax)},

where q,c(max) is defined by eqn (l4a) with .12 replaced by .1~max). The growth of the factor
q,c(max) is constructed in Fig. 7 for two particular cases using the largest values of .12 which
most often occurred at the integration point [25] nearest the outer surface of the spherical shell
at a pole. The associated temporal variation of the dimensionless time steps (AT) according to
eqn (42) are also shown in Fig. 7. It was assumed that axisymmetric creep buckling occurred
when the criterion ATIT < ~ with ~ = 10-3 was satisfied.

It should be noted that for small enough ~ then axisymmetric creep buckling could occur
prior to bifurcation for the four cases plPc = 0.825, 0.850 and 0.875 with E = - 0.001 and
plPc =0.25 with E =-0.5 in Fig. 3. Bifurcation.into a non-axisymmetric state occurred when
the respective non-dimensional radial displacements at the poles (w(O» of the two cases
plPc = 0.825 and 0.875 equalled -0.07244 and -0.92249 with associated dimensionless creep
buckling times TC of 0.87640, and 0.58761. Axisymmetric creep buckling with ~ = 10-3

developed for these two cases when w(O) was -3.16320 and -3.51870 with TC equal to 0.91561
and 0.60168, respectively.
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Some numerical creep buckling calculations for the hydrostatic pressure loading case, which
requires the retention of the terms related to P in eqns (lla) and (lIb) are presented in Fig. 3. It
is evident from these results that there is no practical difference between the creep buckling
behavior of complete spherical shells subjected to hydrostatic or dead-weight-type pressures, at
least for the parameters examined.

The numerical creep buckling results presented in the previous figures are replotted in Fig. 8
with the non-dimensional external pressure ratio (pip.. ) as the ordinate and a measure of the
imperfection (P.lpc) as the abscissa. Also indicated in Fig. 8 are some numerical results for the
creep buckling of axially loaded cylindrical shells which were taken from Fig. 2 in Ref. [5]. This
comparison is made for axially loaded cylindrical shells and externally pressurised spherical
shells with the same alh ratios and material properties and having the same effective stresses. It
is evident that the critical times for the creep buckling of spherical shells are longer than those
for "equivalent" cylindrical shells. A similar situation was also found in Ref. [13] wherein it was
shown that the radial displacements of externally pressurised cylindrical shells grew much more
rapidly than those for externally pressurised spherical shells. In passing, it should be noted that
Obrecht's results in Fig. 2 of Ref. [5], some of which are reproduced in Fig. 8 here, predict finite
creep buckling times when pip.. =0 which does not appear acceptable from a physical
viewpoint.

A direct quantitative comparison cannot be made between the experimental results on
externally pressurised hemispherical shells reported in Ref. [30] and the predictions of the
numerical procedure presented herein because the initial imperfections of the experimental
models were not recorded. Moreover, the creep characteristics of lead were not measured in
Ref. [30] which as remarked in Ref. [31] should be obtained for the same batch of material as
used in the experimental tests. In any event, the following qualitative comparisons may be of
some value.

Tong and Greenstreet [30] found that the creep buckling of hemispherical shells was very
sensitive to the presence of geometrical imperfections. The numerical results for the complete
spherical shells in Figs. 3 and 8 here also reveal a strong sensitivity to the magnitude of the
initial geometric imperfections. Furthermore, Tong and Greenstreet observed that the collapse
of the shells was usually very violent which is in accord with the rapid growth of the radial
displacements near the critical time indicated in Fig. 5. It appears that the buckled shells in Ref.
[30] had various deformed shapes some of which were nearly axisymmetric, while others were
non-symmetric. Tong and Greenstreet uncovered no obvious correlation between the deformed
shapes of the buckled shells and life and in this regard it is interesting to observe from Fig. 3
that the axisymmetric creep buckling and bifurcation pressures for spherical shells with radially
inwards initial imperfections were quite close within certain ranges of the parameters.

Experimental investigations into the creep buckling behavior of boss loaded hemispherical
shells and externally pressurised shallow shells are reported in Ref. [32,33], respectively. These
particular cases have not been examined herein but the temporal characteristics of the radial
displacements are similar to those in Fig. 5 in that they grow very rapidly near the critical times.

The influences of primary creep, post-buckling behavior, and material plasticity have not
been included in the numerical method developed in this article. Murakami and Tanaka[3] have
shown that primary creep can exercise an important effect on the creep buckling behavior of
cylindrical shells. The post-buckling characterics are probably not very important from a
practical viewpoint for the problem examined herein because bifurcation controls the behavior
only within the restricted range of parameters indicated in Fig. 3 for which the associated
pressures are only slightly different from the corresponding axisymmetric creep buckling
values. The authors intend to examine the influence of material plasticity by retaining in eqn (4)
the appropriate expressions for plastic strain increments[17] since it might be quite important
for spherical shells without large yield stresses or having relatively small alh ratios.

CONCLUSIONS
The numerical finite-difference results for the elastic buckling of externally pressurised

imperfect spherical shells agree very closely with the numerical finite-element results of Tong
and Pian [29] as shown in Fig. 2.
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The numerical results in the various figures indicate that initial imperfections exercise an
important influence on the critical times for the creep buckling of complete spherical shells
subjected to external pressures. It appears from the numerical calculations that the creep
buckling behavior of a complete spherical shell is very similar for hydrostatic and dead-weight
type external pressures, at least for the particular parameters examined herein. It turns out
from a practical viewpoint that axisymmetric creep buckling governs the behavior of the
spherical shells investigated in this article with initial imperfections described by eqn (15) but
acting radially inwards at the pole.

It was observed from the present results that the creep buckling times of externally
pressurised complete spherical shells are longer than those for "equivalent" axially loaded
cylindrical shells.
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APPENDIX 1
The elements of the matrix A and vector is en eqn (26) are

All = (I-II)COt9 -(I(> +~), AI1= I.A IJ =0,AI4= - p. cotZII.

AI~ = - P. cot 8.A,,= -(nil + Pl. A11 = -{I + 11+ (I(> +~).+ 11(1(> +~)cot 8

+(1(> +~)l.Azz = cot 8 +1(> +~.AzJ = -12(1-lIz)nll/p..

A14 .. - P. cot 8{1 + cot 8(1(> + ~)}, AZl = - p.{l + cot 11(1(> + ~)}.

Azo= - n'l- nil cot II + II cot8nll-(1(> +~)(nll + P).All =0.

An" -lip.. AJ) =(1- JI)cot 8,A;t.I = AJ~ =O.

Alfo = - p. cotZ8112, A41 = -(1- Jlz)/p.. A41 = A4l = O.

A.. = II cot II.A4l = I + II, A.. " (I(> +~)Ip..All = AlZ = AH= O.

A~ = -I. All = O. A lO = lip., A.I = Aoz = O.

A.l = - 12(1-IIZ)/p.. AM = A.l = 0, A.. = II cot 8.

f
llz

PI" cot II 1(>«0'11 - 20'Z1) d &13.
-1/2

f
liZ fllz

pz= {I + cot 8(</1 + ~)} cflr(O'II- 2O'zz) d &/3 +4nll 4><{(2-1I)0'1I -(1- 2J1)uz2l{ d (Ip..
-m -m

f
llz

Pl = cot II 1(>,(0'11 - 2uzz)( d (13.
-112

p.=fm
l/I,{(2-Jl)ull-(l-2J1)udd(13p..

~1'2

p~ .. O

f
llz

Po=4 _ll2l/1,{(2-Jl)uIl-(l-21')ud(d(/p..

APPEXDIX2
The elements of the matrices E, F and a in eqn (3Ia) are

Ell" p./( I - liZ). En = 0, Ell = - P.(~I + JI)/( I - JlZ). EI4 = O.

EZI =O. Ezz =p. sin 11(1 + P. I/I2)/{2(1 + II)} + p.(lill + I!zI)sin 814.

E:I =- mp.J/{l2(1 + JI)}. Ez• =O. E,II = Ell, El2 .. EZl cosec 8.

El,l = P. l{( I + II) cot111 + 2m zcosec: 8}/{l2(1 + JI)}+ P.(~I + JI)Z/(I- JlZ)

+p.l!lh EJoI = p.. E. I = E.: =0. E'J '" -II. E..=O.

F I1 .. P. cot 8/(1 - liZ). Flz .. - mp. cosec 8[1/0 - II) + p.z/{l2( I+ JIm/2 +p.m(lill + lizz) cosec 814,

FIl = p.[ -(~I + JI)· +(~I+ JI){(~I +JI)-(l- II) cot II) + 1+ 1'1/(1- Jlz)

+ p.l!1I + p.l{(I + II)COtZ8 +mzcosecz8}/{l2(1- JI)}+ p.P.

F.. = p.. Fzt = - Flz sin 8, F:z.. En cot 8 + p.(Ii' I+ Ii!z) sin 814,

FZl =- mp.[(~1 +JI)/{2(1-II)}+ P.z cot 8/12]. Fz• = O.

FJ1 = - p.l{cotZ8 + mZcosecz810 + 1I)}/12 - p.[1 +I' +(~I +4>1)·

+(~I +4iI){~1 +4i1 +(1 + JI)cot 8}]1(1- JI~- p.l!1I. FlZ " - Fncosec 8.

Fll =- P. l{1 + JI+(I + II + 2mI)cosecZ8}cot9/{12(1 + II)}

+p.(4i, + 4i1){2(~1 + 4i,). + (~I + ~,) cot II}/(I- .,z)+ p.(Ii', + Ii II cot 8),

F).f .. (2-Jl)p. cot9,F.. = JI.Fq=O.F.l= - .,zcotll.F.... O.

Gil = p.[(~, +4i1)· +(~I +4it){(1- 2J1) cot 8 - (~, +4i1)} - JI

-coe 8- (I - .,)mI cosecz8/2]1(1- .,1) - p.l{(1 + JI) cotZ8

+ mI cosecz8/2}/{12(1 +JI)}- p.l!1l- p.mI(1i1l + lin)cosecz814- JJ.P,
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G12 =mjl cosec B[{lv -I)(<bl +Jll +(3 - vlco18}/(l-l'l

+ jlJ(3 + 21'l cot BI12l/{2(1 + 1'») + J.lm(ii" + iiJJl cot Bcosec 814.

G" =J.l(J, + Ji,)jm 1 cosec1 8/{2() + I'll-I/( I - I'll

- jl )m J(2 + I'lcot 8cosecJ8/{12{1 + vl). GI• '" jl{l- v) cot 8.

Gl' =Gil sin 8 - J.lm(nTI + ii!J)/4. GJ1 =jll- mJ cosec B+(1- 1'){(2cos 8

- (J, +Ji,l sin IJ)(~, +J;l-cot 8) +(<PI + J;ll* sin 8 +cosec 8)/2j/( 1- I'J)

+jl' sin 81-'cot1 8 +{I/2 - m2(1 + l'))cosecJ8)/12(1 + 1'))

- jln22 sin 8+ jl{-(nll + 1122) cosec 8+(iiTI +n!2) cos 8114 - jlP sin 8.

(2) = mp.llllI -I'l-ll~, +~,)(2cot 9 - ~'-~l) +(~l + ~,l·

-(~, +J;,) cot 8)/{2(1 +I'm + mjl)[cot2 /J+ {m2(1 + vl

-II cosec: 8jl{l2(1 + I'll + 1£IfIIi22 +mJlP, 024 =Jll'm.

0)1'" jl){1 +(I- m2
) cosecJ8) cot/J/12 - Jl[(I + I'l{cot/J

+ (~l +J;tl) + {(<PI +~l)· +(<Pl +~I)COt 9X~, +~I +Vcot 8l

+(~I +~'}{(~I +~I)· -I' cosec28)

(I-I')m2(~1 + ~1)cosec2 8/2j/(I- 1'2)_ jl(nT, + 1111 cot 8).

G.'2 = - jl)m Cosec B{2 + II + (I + 1I)(coe 8- m2cosec28»)/{I2(1 + II»)

+jlm Cosec 811 + II + II(<P, + ~l)*

+(1- V)(til +Jl)(ti, + J,l- cot 8)/2)1(1- vJl+ p.m cosec 8n2J.

GJ) = jl-'m 2 cosecJ8{2 cosee 8+ (I + vl(l +2coe 8 - m2 cosec28l)/lI2(1 + II))

- I-lm2 casec28nJ2 +p.[ - {2 +(<PI + ~l)*

+(ti, + ~I) cot 8)/0 - v) - m2(<p, +~lfcosecJ 8/{2{1 + 11m.

G34 '" - #1(I- II + I'm2cosec28), (;41 = 1'2 cote.

0 02=- 112m COsec 9. GO) =112m2cosec2 8. 0.. =- 1211(1- v2)/J.l2.

APPENDIX 3
The rate formulation which was used to derive eqn (26) is not suitable for the static axisymmetric elastic buckling case.

Thus. it is assumed that nll"+,,,I=nll'Pl+6nll. where nil'" is the value at the pressure p, while 6n 1l is the incremental
change in nil when the pressure is increased by an incremental amount to p+6p. Similarly, q"+,,,1 = q'PI+ 6q,mll"+,,,1 =
mlll,1 +8m". UI,+4p1 = ul" +6u, WI,+"'1 = WI" +6w, and 1/1"+41') = 1/11') + 61/1. In this circumstance. eqn (26) for dead-weight
type pressure loading is replaced by 62*+ A8t = P, where 62 = [6nll' 6q, 6m 1l , 6u, 611I, 6I/If, A is given in Appendix I
except

AI. = - nil. AJI '" - {I + v +~* +~ cot8 +(1/1 +Jif + 12{1- v2)mll/#1).

A2. '" - {2(l!> + ~)nll- q + IJ.U cot2 8+IJ.w cot B}.

and

PI'" - nT, - {(I- II) cot 8- (41 + ~)}nll -q +p.u cot2 8 +Jlw cot/J.

P2 = P -q*+{1 + v +~* +~ cot 8 +(41 +J)2}nll

-(cot 8 +1/1 +Jl)q + 12(1- v2)nllmllljl +jl{l +(41 +J)tot 8}u toU +jl{l +(1/1 +J)cot 8}1II.

p) = - mTI +q//I- -(I-v)mll cot 8+ Jl4J coe 8112.

P. = - u* + (J -1I
2)nllljl-vu coU - (I +1')11I - (1/112 +J)I/II/I-.

P~ = -w*+u -I/I/p.,

P. = -1/1*+ 12(1-v2)mllljl-1IIP cot 1/1,

where the superscripts p have been omitted for convenience.


